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On the Hyper Order of Solutions of Linear
Differential Equations with Entire Coefficients

Karima Hamani and Benharrat Belaïdi

Abstract. In this paper, we investigate higher order homogeneous
linear differential equations with entire coefficients of finite order. We
improve and extend the results due to the second author and Hamouda
by introducing the concept of hyper-order. We also consider nonhomo-
geneous linear differential equations.

1. Introduction

In this paper, we shall use the fundamental results and the standard nota-
tions of the Nevanlinna value distribution theory of meromorphic functions
(see [13]). In addition, we use the notations σ(f) and µ (f) to denote respec-
tively the order and the lower order of growth of a meromorphic function
f(z) and λ (f) to denote the exponent of convergence of zeros of f(z).

We define the linear measure of a setE ⊂ [0,+∞) bym(E) =
∫ +∞
0 χE(t)dt

and the logarithmic measure of a set H ⊂ [1,+∞) by lm(H) =
∫ +∞
1

χH(t)
t dt,

where χF denote the characteristic function of a set F .

Definition 1.1 ([6, 22]). Let f (z) be a meromorphic function. Then the
hyper-order of f (z) is defined by

(1.1) σ2 (f) = lim sup
r→+∞

log log T (r, f)
log r

,

where T (r, f) is the characteristic function of Nevanlinna.

Definition 1.2 ([6]). Let f (z) be a meromorphic function. Then the hyper-
exponent of convergence of distinct zeros of f (z) is defined by

(1.2) λ2 (f) = lim sup
r→+∞

log logN
(
r, 1

f

)
log r

,

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in the disc

{z : |z| < r}.
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Let n ≥ 2 be an integer and let A0 (z) , . . . , An−1 (z) with A0 (z) 6≡ 0 be
entire functions. It is well-known that if some of the coefficients of the linear
differential equation

(1.3) f (n) +An−1 (z) f (n−1) + · · ·+A1 (z) f ′ +A0 (z) f = 0

are transcendental, then (1.3) has at least one solution of infinite order.
Thus a natural question arises: What conditions on A0 (z) , . . . , An−1 (z) will
guarantee that every solutions f 6≡ 0 of (1.3 is of infinite order? For the above
question, there are different results for the second and higher order linear
differential equations (see for example [2− 4, 6, 8− 10, 12, 14− 17, 19]).

In [3], the second author and Hamouda have considered equation (1.3)
and proved the following result:

Theorem A (cite3). Let A0 (z) , . . . , An−1 (z) with A0 (z) 6≡ 0 be entire
functions. Suppose that there exist a sequence of complex numbers (zk)k∈N
with lim

k→+∞
zk = ∞ and three real numbers α, β and µ satisfying 0 ≤ β < α

and µ > 0 such that

(1.4) |A0 (zk)| ≥ exp {α |zk|µ}
and

(1.5) |Aj (zk)| ≤ exp {β |zk|µ} (j = 1, 2, ..., n− 1)

as k → +∞. Then every solution f 6≡ 0 of the equation (1.3) has an infinite
order.

For an integer n ≥ 2, we consider the linear differential equation

(1.6) An (z) f (n) +An−1 (z) f (n−1) + ...+A1 (z) f ′ +A0 (z) f = 0,

where A0 (z) , . . . , An−1 (z) , An (z) with A0 (z) 6≡ 0 and An (z) 6≡ 0 are entire
functions. If An ≡ 1, it is well-known that all solutions of (1.6) are entire
functions but in the case when An is a nonconstant entire function, it follows
that the equation (1.6) can have meromorphic solutions.

Now the question which arises is: how to describe precisely the prop-
erties of growth of solutions of the equation (1.6)? Recently, L. Z. Yang
[21] has considered equation (1.6) and obtained different results concerning
the growth of its solutions. In [20], J. Xu and Z. Zhang have studied the
equation (1.6) and obtained the following result, but the condition that the
poles of every meromorphic solution of (1.6) must be of uniformly bounded
multiplicity was missing. Here we give the full result:

Theorem B ([20]). Let H be a set of complex numbers satisfying den{|z| :
z ∈ H}> 0, and let A0 (z) , . . . , An−1 (z) , An (z) with A0 (z) 6≡ 0 be entire
functions such that max {σ (Aj) (j = 1, 2, . . . , n)} ≤ σ (A0) = σ < +∞,
and for real constants α, β satisfying 0 ≤ β < α and for ε > 0 sufficiently
small, we have

(1.7) |A0 (z)| ≥ exp
{
α |z|σ−ε}
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and

(1.8) |Aj (z)| ≤ exp
{
β |z|σ−ε} (j = 1, 2, . . . , n)

as z → ∞ for z ∈ H. Then every meromorphic solution whose poles are
of uniformly bounded multiplicity (or entire solution) f 6≡ 0 of the equation
(1.6) has an infinite order and satisfies σ2 (f) = σ.

2. Preliminary Lemmas

Lemma 2.1 ([11] p. 89). Let f (z) be a transcendental meromorphic func-
tion of finite order σ. Let Γ = {(k1, j1) , (k2, j2) , . . . , (km, jm)} denote a set
of distinct pairs of integers satisfying ki > ji ≥ 0 (i = 1, 2, . . . ,m) and let
ε > 0 be a given constant. Then there exists a subset E1 ⊂ (1,+∞) that has
finite logarithmic measure such that for all z satisfying |z| = r /∈ E1 ∪ [0, 1]
and for all (k, j) ∈ Γ, we have

(2.1)

∣∣∣∣∣f (k) (z)
f (j) (z)

∣∣∣∣∣ ≤ |z|(k−j)(σ−1+ε) .

Lemma 2.2 ([11]). Let f (z) be a transcendental meromorphic function. Let
α > 1 and Γ = {(k1, j1) , (k2, j2) , . . . , (km, jm)} denote a set of distinct pairs
of integers satisfying ki > ji ≥ 0 (i = 1, 2, . . . ,m). Then there exist a set
E2 ⊂ (1,+∞) having finite logarithmic measure and a constant B > 0 that
depends only on α and Γ such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2

and all (k, j) ∈ Γ, we have

(2.2)

∣∣∣∣∣f (k)(z)
f (j)(z)

∣∣∣∣∣ ≤ B

[
T (αr, f)

r
(logα r) log T (αr, f)

]k−j

.

Lemma 2.3 ([6]). Let g(z) be an entire function of infinite order with the
hyper-order σ2(g) = σ < +∞ and let νg(r) be the central index of g (z).
Then

(2.3) lim sup
r→+∞

log log νg(r)
log r

= σ.

Lemma 2.4 ([11]). Let f (z) be a meromorphic function, let j be a positive
integer, and let α > 1 be a real constant. Then there exists a constant R > 0
such that for all r ≥ R, we have

(2.4) T
(
r, f (j)

)
≤ (j + 2)T (αr, f) .

Lemma 2.5 ([7]). Let f (z) = g (z) /d (z), where g (z) is a transcendental
entire function with µ (g) = µ (f) = µ ≤ σ (g) = σ (f) ≤ +∞, and d (z)
is the canonical product (or polynomial) formed with the non-zero poles of
f (z) with σ (d) = λ (d) = λ

(
1
f

)
= β < µ. Let z be a point with |z| = r at
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which |g (z)| = M (r, g) and νg (r) denote the central index of g. Then the
estimation

(2.5)
f (n)(z)
f(z)

=
(
νg (r)
z

)n

(1 + o (1)) , (n ≥ 1 is an integer )

holds for all |z| = r /∈ E3, where E3 is a subset of finite logarithmic measure.

Lemma 2.6 ([7]). Let f (z) = g (z) /d (z), where g (z) is a transcendental
entire function with µ (g) = µ (f) = µ ≤ σ (g) = σ (f) ≤ +∞, and d (z) is
the canonical product (or polynomial) formed with the non-zero poles of f (z)
with σ (d) = λ (d) = λ

(
1
f

)
= β < µ. Then there exists a set E4 ⊂ (1,+∞)

that has finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E4 and |g (z)| = M (r, g), we have

(2.6)
∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ ≤ r2s (s ≥ 1 is an integer) .

Lemma 2.7 ([5]). Let g (z) be a meromorphic function of order σ (g) = α <
+∞. Then for any given ε > 0, there exists a set E5 ⊂ (1,+∞) that has
finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪E5,
r → +∞, we have

(2.7) |g (z)| ≤ exp
{
rα+ε

}
.

Combining Lemma 2.7 and applying it to 1/g (z), we obtain the following
lemma.

Lemma 2.8. Let g (z) be a meromorphic function of order σ (g) = α < +∞.
Then for any given ε > 0, there exists a set E6 ⊂ (1,+∞) that has finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r →
+∞, we have

(2.8) exp
{
−rα+ε

}
≤ |g (z)| ≤ exp

{
rα+ε

}
.

To avoid some problems caused by the exceptional set, we recall the fol-
lowing lemmas.

Lemma 2.9 ([12]). Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
non-decreasing functions such that ϕ (r) ≤ ψ (r) for all r /∈ E7∪ [0, 1], where
E7 ⊂ (1,+∞) is a set of of finite logarithmic measure. Let α > 1 be a given
constant. Then there exists an r0 = r0 (α) > 0 such that ϕ (r) ≤ ψ (αr) for
all r > r0.

Lemma 2.10 ([1]). Let g : [0,+∞) → R and h : [0,+∞) → R be monotone
non-decreasing functions such that g (r) ≤ h (r) outside of an exceptional
set E8 ⊂ (0,+∞) of finite linear measure. Then for any λ > 1, there exists
r1 > 0 such that g (r) ≤ h (λr) for all r > r1.
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3. Main Results

The main purpose of this paper is to improve and extend Theorem A
for equations of the form (1.6) by using the concept of hyper-order and
considering some coefficient As (s = 0, 1, . . . , n− 1). We shall prove the
following results.

Theorem 3.1. Let A0 (z) , . . . , An−1 (z) , An (z) be entire functions with A0 (z) 6≡
0 and An (z) 6≡ 0 such that there exists some integer s (s = 0, 1, . . . , n− 1)
satisfying

max {σ (Aj) (j 6= s)} < µ (As) ≤ σ (As) = σ < +∞.

Suppose that there exist a sequence of complex numbers (zk)k∈N with
lim

k→+∞
zk = ∞ and two real numbers α and β satisfying 0 ≤ β < α such

that for ε > 0 sufficiently small, we have

(3.1) |As (zk)| ≥ exp
{
α |zk|σ−ε}

and

(3.2) |Aj (zk)| ≤ exp
{
β |zk|σ−ε} (j 6= s)

as k → +∞. Then every transcendental meromorphic solution f 6≡ 0 whose
poles are of uniformly bounded multiplicity of the equation (1.6) has an in-
finite order and satisfies σ2 (f) = σ.

Proof. Set

(3.3) max {σ (Aj) (j 6= s)} = λ < µ (As) ≤ σ (As) = σ < +∞.

Let f (6≡ 0) be a transcendental meromorphic solution whose poles are of
uniformly bounded multiplicity of (1.6). We set f (z) = g (z) /d (z), where
g (z) is an entire function and d (z) is the canonical product (or polynomial)
formed with the non-zero poles of f (z). By the fact that the poles of f (z)
can only occur at the zeros of An (z), it follows that σ (d) = λ (d) = λ

(
1
f

)
≤

λ < µ (As).
First assume that σ (f) = ρ < +∞. For j = 0, ..., n− 1, since

T
(
r, f (j+1)

)
≤ 2T

(
r, f (j)

)
+m

(
r,
f (j+1)

f (j)

)
,

m

(
r,
f (j+1)

f (j)

)
= O (log r) ,

we can obtain by using Lemma 2.4 for all r ≥ R

T
(
r, f (j+1)

)
≤ 2T

(
r, f (j)

)
+O (log r)

(3.4) ≤ 2 (j + 2)T (2r, f) +O (log r) .
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We can rewrite (1.6) as

−As (z) = An (z)
f (n)

f (s)
+An−1 (z)

f (n−1)

f (s)
+ · · ·+As+1 (z)

f (s+1)

f (s)

(3.5) +As−1 (z)
f (s−1)

f (s)
+ · · ·+A1 (z)

f ′

f (s)
+A0 (z)

f

f (s)
.

By (3.4) and (3.5), we obtain for all r ≥ R

(3.6) T (r,As) ≤ cT (2r, f) +
∑
j 6=s

T (r,Aj) +O (log r) ,

where c (> 0) is a constant. By (3.6) and (3.3), we conclude that µ (f) ≥
µ (As). By the fact that σ (d) = λ (d) = λ

(
1
f

)
≤ λ < µ (As) and the

inequality T (r, f) ≤ T (r, g)+T (r, d)+O (1), it follows that µ (g) = µ (f) ≥
µ (As) > λ ≥ σ (d) and σ (g) = σ (f) < +∞. Hence by Lemma 2.6, there
exists a set E4 ⊂ (1,+∞) that has finite logarithmic measure such that for
all z satisfying |z| = r /∈ [0, 1] ∪ E4 and |g (z)| = M (r, g), we have

(3.7)
∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ ≤ r2s (s ≥ 1 is an integer) .

By Lemma 2.1, there exists a subset E1 ⊂ (1,+∞) that has finite logarithmic
measure such that for all z satisfying |z| = r /∈ E1 ∪ [0, 1], we have

(3.8)

∣∣∣∣∣f (j) (z)
f (s) (z)

∣∣∣∣∣ ≤ r(j−s)(ρ−1+ε) (j = s+ 1, . . . , n)

and

(3.9)

∣∣∣∣∣f (j) (z)
f (z)

∣∣∣∣∣ ≤ rj(ρ−1+ε) (j = 1, . . . , s− 1) .

We can rewrite (1.6) as

(3.10)

An (z)
As (z)

f (n)

f (s)
+
An−1 (z)
As (z)

f (n−1)

f (s)
+ · · ·+ As+1 (z)

As (z)
f (s+1)

f (s)

+
As−1 (z)
As (z)

f (s−1)

f

f

f (s)
+ · · ·+ A1 (z)

As (z)
f ′

f

f

f (s)
+
A0 (z)
As (z)

f

f (s)
= −1.

From (3.1), (3.2) and (3.7)-(3.9), we have

(3.11)
∣∣∣∣Aj (zk)
As (zk)

∣∣∣∣
∣∣∣∣∣f (j) (zk)
f (s) (zk)

∣∣∣∣∣ ≤ |zk|(j−s)(ρ−1+ε)

exp
{
(α− β) |zk|σ−ε} (j = s+ 1, . . . , n) ,

(3.12)∣∣∣∣Aj (zk)
As (zk)

∣∣∣∣
∣∣∣∣∣f (j) (zk)
f (zk)

∣∣∣∣∣
∣∣∣∣ f (zk)
f (s) (zk)

∣∣∣∣ ≤ |zk|2s+j(ρ−1+ε)

exp
{
(α− β) |zk|σ−ε} (j = 1, . . . , s− 1)
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and

(3.13)
∣∣∣∣A0 (zk)
As (zk)

∣∣∣∣ ∣∣∣∣ f (zk)
f (s) (zk)

∣∣∣∣ ≤ |zk|2s

exp
{
(α− β) |zk|σ−ε} ,

where |zk| = rk /∈ [0, 1]∪E1∪E4 and |g (zk)| = M (rk, g). From (3.11)-(3.13),
it follows that

lim
k→+∞

∣∣∣∣Aj (zk)
As (zk)

∣∣∣∣
∣∣∣∣∣f (j) (zk)
f (s) (zk)

∣∣∣∣∣ = 0 (j = s+ 1, . . . , n) ,

lim
k→+∞

∣∣∣∣Aj (zk)
As (zk)

∣∣∣∣
∣∣∣∣∣f (j) (zk)
f (zk)

∣∣∣∣∣
∣∣∣∣ f (zk)
f (s) (zk)

∣∣∣∣ = 0 (j = 1, . . . , s− 1)

and

lim
k→+∞

∣∣∣∣A0 (zk)
As (zk)

∣∣∣∣ ∣∣∣∣ f (zk)
f (s) (zk)

∣∣∣∣ = 0.

By making k → +∞ in relation (3.10), we get a contradiction. Hence
σ (f) = +∞.

From (3.5), it follows that

|As (z)| ≤ |An (z)|

∣∣∣∣∣f (n)

f (s)

∣∣∣∣∣+ |An−1 (z)|

∣∣∣∣∣f (n−1)

f (s)

∣∣∣∣∣+ · · ·+ |As+1 (z)|

∣∣∣∣∣f (s+1)

f (s)

∣∣∣∣∣
(3.14) + |As−1 (z)|

∣∣∣∣∣f (s−1)

f

∣∣∣∣∣
∣∣∣∣ ff (s)

∣∣∣∣+· · ·+|A1 (z)|
∣∣∣∣f ′f
∣∣∣∣ ∣∣∣∣ ff (s)

∣∣∣∣+|A0 (z)|
∣∣∣∣ ff (s)

∣∣∣∣ .
By Lemma 2.2, there exist a constant B > 0 and a set E2 ⊂ (1,+∞) having
finite logarithmic measure such that for all z satisfying |z| = r /∈ E2 ∪ [0, 1],
we have

(3.15)

∣∣∣∣∣f (j)(z)
f (s)(z)

∣∣∣∣∣ ≤ Br [T (2r, f)]j−s+1 (j = s+ 1, . . . , n) ,

(3.16)

∣∣∣∣∣f (j)(z)
f(z)

∣∣∣∣∣ ≤ Br [T (2r, f)]j+1 (j = 1, . . . , s− 1) .

Hence from (3.1), (3.2), (3.7) and (3.14)-(3.16), it follows that

(3.17) exp
{
α |zk|σ−ε} ≤ Bn |zk|2s+1 [T (2rk, f)]n+1 exp

{
β |zk|σ−ε}

as rk → +∞, |zk| = rk /∈ [0, 1]∪E2∪E4 and |g (zk)| = M (rk, g). By Lemma
2.9 and (3.17), it follows that σ2 (f) ≥ σ − ε. Since ε > 0 is arbitrary, we
get σ2 (f) ≥ σ.

Now we prove that σ2 (f) ≤ σ. We can rewrite (1.6) as

−An (z)
f (n)

f
= An−1 (z)

f (n−1)

f
+ · · ·+As+1 (z)

f (s+1)

f
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(3.18) +As (z)
f (s)

f
+As−1 (z)

f (s−1)

f
+ · · ·+A1 (z)

f ′

f
+A0 (z) .

By Lemma 2.5, there exist a set E3 ⊂ (1,+∞) of finite logarithmic measure
such that for all z satisfying |z| = r /∈ E3 and |g (z)| = M (r, g), we have

(3.19)
f (n)(z)
f(z)

=
(
νg (r)
z

)n

(1 + o (1)) (n ≥ 1 is an integer) .

By Lemma 2.8, there exists a set E6 ⊂ (1,+∞) that has finite linear measure
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r → +∞, we have

(3.20) |Aj (z)| ≤ exp
{
rσ+ε

}
(j = 0, 1, . . . , n− 1)

and

(3.21) |An (z)| ≥ exp
{
−rσ+ε

}
.

Substituting (3.19) into (3.18), for all z satisfying |z| = r /∈ E3 and |g (z)| =
M (r, g), we have

−An (z)
(
νg (r)
z

)n

(1 + o (1)) = An−1 (z)
(
νg (r)
z

)n−1

(1 + o (1))

+ · · ·+As+1 (z)
(
νg (r)
z

)s+1

(1 + o (1)) +As (z)
(
νg (r)
z

)s

(1 + o (1))

(3.22)

+As−1 (z)
(
νg (r)
z

)s−1

(1 + o (1))+· · ·+A1 (z)
(
νg (r)
z

)
(1 + o (1))+A0 (z) .

Hence from (3.20)-(3.22), for all z satisfying |z| = r /∈ [0, 1] ∪ E3 ∪ E6,
r → +∞ and |g (z)| = M (r, g), we have

exp
{
−rσ+ε

} ∣∣∣∣νg (r)
z

∣∣∣∣n |1 + o (1)| ≤ exp
{
rσ+ε

} ∣∣∣∣νg (r)
z

∣∣∣∣n−1

|1 + o (1)|

+ · · ·+ exp
{
rσ+ε

} ∣∣∣∣νg (r)
z

∣∣∣∣ |1 + o (1)|+ exp
{
rσ+ε

}
(3.23) ≤ n exp

{
rσ+ε

} ∣∣∣∣νg (r)
z

∣∣∣∣n−1

|1 + o (1)| .

By (3.23) and Lemma 2.9, we get

(3.24) lim sup
r→+∞

log log νg(r)
log r

≤ σ + ε.

Since ε > 0 is arbitrary, by (3.24) and Lemma 2.3, we obtain σ2 (g) ≤ σ.
Hence σ2 (f) ≤ σ. This and the fact that σ2 (f) ≥ σ yield σ2 (f) = σ. �

Considering the nonhomogeneous linear differential equation, we obtain:
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Theorem 3.2. Let A0 (z) , . . . , An−1 (z), An (z) with A0 (z) 6≡ 0 and An (z) 6≡
0 be entire functions satisfying the hypotheses of Theorem 3.1 and let F 6≡ 0
be an entire function such that σ (F ) < µ (As) Then every transcendental
meromorphic solution f whose poles are of uniformly bounded multiplicity of
the linear differential equation

(3.25) An (z) f (n) +An−1 (z) f (n−1) + · · ·+A1 (z) f ′ +A0 (z) f = F

satisfies λ2 (f) = σ2 (f) = σ, with at most one exceptional solution f0 of
finite order.

Proof. First we show that (3.25) can possess at most one exceptional so-
lution f0 of finite order. In fact, if f∗ is another solution of finite order of
equation (3.25), then f0−f∗ is of finite order. But f0−f∗ is a solution of the
corresponding homogeneous equation (1.6) of (3.25). This contradicts The-
orem 3.1. We assume that f is an infinite order transcendental meromorphic
solution of (3.25) and f1, f2, . . . , fn is a solution base of the corresponding
homogeneous equation (1.6) of (3.25). Then f can be expressed in the form

(3.26) f (z) = B1 (z) f1 (z) +B2 (z) f2 (z) + · · ·+Bn (z) fn (z) ,

where B1 (z) , . . . , Bn (z) are suitable meromorphic functions determined by
(3.27)

B′1 (z) f1 (z) +B′2 (z) f2 (z) + ...+B′n (z) fn (z) = 0
B′1 (z) f ′1 (z) +B′2 (z) f ′2 (z) + ...+B′n (z) f ′n (z) = 0

...............................

B′1 (z) f (n−1)
1 (z) +B′2 (z) f (n−1)

2 (z) + ...+B′n (z) f (n−1)
n (z) = F (z) .

Since the Wronskian W (f1, f2, . . . , fn) is a differential polynomial in
f1, f2, . . . , fn with constant coefficients, it is easy to deduce that

σ2 (W ) ≤ max {σ2 (fj) : j = 1, . . . , n} = σ (As) = σ.

From (3.27), we have

(3.28) B′j = FGj (f1, f2, . . . fn)W (f1, f2, . . . , fn)−1 (j = 1, 2, . . . , n) ,

where Gj (f1, f2, . . . fn) are differential polynomials in f1, f2, . . . , fn with
constant coefficients. Thus
(3.29)
σ2 (Gj) ≤ max {σ2 (fj) : j = 1, . . . , n} = σ (As) = σ (j = 1, 2, . . . , n) .

By (3.28) and (3.29), we have
(3.30)

σ2 (Bj) = σ2

(
B′j
)
≤ max {σ2 (F ) , σ (As)} = σ (As) (j = 1, 2, . . . , n) .

Then from (3.26) and (3.30), we get

(3.31) σ2 (f) ≤ max {σ2 (fj) , σ2 (Bj) : j = 1, 2, . . . , n} = σ (As) .
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We can rewrite (3.25) as

−As (z) = An (z)
f (n)

f (s)
+An−1 (z)

f (n−1)

f (s)
+ · · ·+As+1 (z)

f (s+1)

f (s)

(3.32) +As−1 (z)
f (s−1)

f (s)
+ · · ·+A1 (z)

f ′

f (s)
+A0 (z)

f

f (s)
− F (z)

f (s)
.

Set

(3.33) max {σ (Aj) (j 6= s) , σ (F )} = γ < µ (As) ≤ σ (As) = σ < +∞.

We set f (z) = g (z) /d (z), where g (z) is an entire function and d (z) is the
canonical product (or polynomial) formed with the non-zero poles of f (z).
By the fact that the poles of f (z) can only occur at the zeros of An (z), it
follows that σ (d) = λ (d) = λ

(
1
f

)
≤ γ < µ (As). For j = 0, . . . , n− 1, since

T
(
r, f (j+1)

)
≤ 2T

(
r, f (j)

)
+m

(
r,
f (j+1)

f (j)

)
,

m

(
r,
f (j+1)

f (j)

)
= O

(
log rT

(
r, f (j)

))
,

we can obtain by using Lemma 2.4 for all r ≥ R

T
(
r, f (j+1)

)
≤ 2T

(
r, f (j)

)
+O

(
log rT

(
r, f (j)

))
(3.34) ≤ 2 (j + 2)T (2r, f) +O

(
log rT

(
r, f (j)

))
.

We have also for sufficiently large r

O
(
log rT

(
r, f (j)

))
= o

(
T
(
r, f (j)

))
which yields

(3.35) O
(
log rT

(
r, f (j)

))
≤ 1

2
T
(
r, f (j)

)
.

By (3.34), (3.35) and Lemma 2.4, we can obtain from (3.32) for sufficiently
large r

(3.36) T (r,As) ≤ T (r, F ) + cT (2r, f) +
∑
j 6=s

T (r,Aj) ,

where c (> 0) is a constant. By (3.36) and (3.33), we conclude µ (f) ≥
µ (As). By the fact that σ (d) = λ (d) = λ

(
1
f

)
≤ γ < µ (As) and the

inequality T (r, f) ≤ T (r, g)+T (r, d)+O (1), it follows that µ (g) = µ (f) >
σ (d) and σ (g) = σ (f) = +∞. Hence by Lemma 2.6, there exists a set E4 ⊂
(1,+∞) that has finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E4 and |g (z)| = M (r, g), we have (3.7) holds. By Lemma
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2.2, there exist a constant B > 0 and a set E2 ⊂ (1,+∞) of finite logarithmic
measure such that for all z satisfying |z| = r /∈ E2 ∪ [0, 1], we have (3.15)
and (3.16) hold. From (3.32), it follows that

|As (z)| ≤ |An (z)|

∣∣∣∣∣f (n)

f (s)

∣∣∣∣∣+ |An−1 (z)|

∣∣∣∣∣f (n−1)

f (s)

∣∣∣∣∣+ · · ·+ |As+1 (z)|

∣∣∣∣∣f (s+1)

f (s)

∣∣∣∣∣
+ |As−1 (z)|

∣∣∣∣∣f (s−1)

f

∣∣∣∣∣
∣∣∣∣ ff (s)

∣∣∣∣+ · · ·+ |A1 (z)|
∣∣∣∣f ′f
∣∣∣∣ ∣∣∣∣ ff (s)

∣∣∣∣
(3.37) + |A0 (z)|

∣∣∣∣ ff (s)

∣∣∣∣+ ∣∣∣∣Ff
∣∣∣∣ ∣∣∣∣ ff (s)

∣∣∣∣ .
On the other hand, for any given ε (0 < 2ε < σ − γ), we have for a suffi-
ciently large r

(3.38) |F (z)| ≤ exp
{
rγ+ε

}
and |d (z)| ≤ exp

{
rγ+ε

}
.

Since M (r, g) ≥ 1, it follows from (3.7) and (3.38) that

(3.39)
∣∣∣∣F (z)
f (z)

∣∣∣∣ ∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ = |F (z)| |d (z)|
|g (z)|

∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ ≤ r2s exp
{
2rγ+ε

}
as |z| = r → +∞ and |g (z)| = M (r, g). From (3.1), (3.2), (3.7), (3.15),
(3.16) and (3.39), it follows that

exp
{
α |zk|σ−ε} ≤ Bn |zk|2s+1 [T (2rk, f)]n+1 exp

{
β |zk|σ−ε}

(3.40) + |zk|2s exp
{
2 |zk|γ+ε}

as k → +∞, |zk| = rk /∈ [0, 1] ∪ E2 ∪ E4 and |g (zk)| = M (rk, g). From
(3.40) and Lemma 2.9, we get σ2 (f) ≥ σ − ε. Since ε > 0 is arbitrary, it
follows that σ2 (f) ≥ σ. This and the fact that σ2 (f) ≤ σ yield σ2 (f) = σ.

By (3.25), it is easy to see that if f has a zero z0 of order α (> n), then
F must have a zero at z0 of order α− n. Hence

n

(
r,

1
f

)
≤ nn

(
r,

1
f

)
+ n

(
r,

1
F

)
and

(3.41) N

(
r,

1
f

)
≤ nN

(
r,

1
f

)
+N

(
r,

1
F

)
.

We can rewrite (3.25) as
(3.42)

1
f

=
1
F

(
An (z)

f (n)

f
+An−1 (z)

f (n−1)

f
+ · · ·+A1 (z)

f ′

f
+A0 (z)

)
.
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By (3.42), we have

(3.43) m

(
r,

1
f

)
≤

n∑
j=1

m

(
r,
f (j)

f

)
+

n∑
j=0

m (r,Aj) +m

(
r,

1
F

)
+O (1) .

By (3.41) and (3.43), we obtain for |z| = r outside a set E of finite linear
measure

T (r, f) = T

(
r,

1
f

)
+O (1)

(3.44) ≤ nN

(
r,

1
f

)
+

n∑
j=0

T (r,Aj) + T (r, F ) +O (log (rT (r, f))) .

For sufficiently large r and any given ε > 0, we have

(3.45) O (log r + log T (r, f)) ≤ 1
2
T (r, f) ,

(3.46)
n∑

j=0

T (r,Aj) ≤ (n+ 1) rσ+ε

and

(3.47) T (r, F ) ≤ rσ(F )+ε.

Thus by (3.44)− (3.47), we have

(3.48) T (r, f) ≤ 2nN
(
r,

1
f

)
+ 2 (n+ 1) rσ+ε + 2rσ(F )+ε,

where |z| = r /∈ E. Hence for any f with σ2 (f) = σ, by (3.48) and Lemma
2.10, we have σ2 (f) ≤ λ2 (f). Therefore, λ2 (f) = σ2 (f) = σ. �
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